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Abstract—The design and robust control of morphing Un-
manned Aerial Vehicles (UAVs) require high-fidelity aerodynamic
models that are difficult to obtain experimentally. The high-
dimensional and coupled flight dynamics of these systems make
traditional characterisation methods, such as manual wind tunnel
testing, prohibitively slow and unable to capture unsteady effects.
This work details the development and application of the CARAC
platform, a Comprehensive Automated Robotic Aerodynamic
Characterisation system, integrating a 6-DOF robotic arm, high-
frequency force/torque sensors, and an open-jet wind tunnel. We
first validate the platform’s precision and then use it to demon-
strate the limitations of an analytical model when predicting
body forces during dynamic motion. A comparative study on data
collection strategies for training neural network models reveals
that a time-efficient, free-flight data collection method yields
models with superior generalisation across a wide range of flight
conditions compared to systematic axis sweeps. Furthermore, we
show that predictive performance is currently constrained not by
model capacity, but by the richness of the dynamic events within
the training data, providing a clear direction for future work in
this domain.

Index Terms—aerodynamics, automation, robotics, UAV

I. INTRODUCTION

IGH-FIDELITY aerodynamic models are essential for

the design and robust control of morphing Unmanned
Aerial Vehicles (UAVs), yet their characterisation is compli-
cated by high-dimensional, coupled flight dynamics. Morphing
wings offer the potential to dynamically optimise an aircraft’s
shape for different flight conditions, improving overall per-
formance across the flight envelope [1]. However, to bridge
the simulation-to-reality gap for these complex systems, a
comprehensive experimental dataset is required that captures
both static and, critically, dynamic aerodynamic responses.
This work details the development and capabilities of a
platform designed to acquire this data with high efficiency
and repeatability.

Aerodynamic analysis traditionally relies on a trade-off
between computational and experimental methods. While low-
order simulation tools are fast, they often fail to accurately
predict drag and other viscous effects; conversely, high-order
Computational Fluid Dynamics (CFD) is too computationally
intensive for exploring the vast parameter space of a morphing
vehicle [2]. As noted in a comprehensive review by Li et
al., experimental wind tunnel testing is therefore a crucial
step for validating models and advancing morphing concepts
beyond the proof-of-concept stage [1]. However, traditional
manual testing is prohibitively slow [3], and extracting clean
coefficients from noisy free-flight data remains a significant
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Fig. 1: The CARAC experimental apparatus,

showing the
Stdubli TX2-90 robotic arm (yellow), WindShape tunnel
(black), the morphing drone (white) mounted via the custom
adaptor (white cylinder) and a motion capture camera in the
background (blue ring).

challenge, motivating the development of automated experi-
mental platforms.

The use of such automated system is an active area of
research. For instance, Baris et al. [4] utilised a Stewart
platform for dynamic testing but noted that the motion rates
achieved were insufficient to fully resolve the unsteady aero-
dynamic effects present in rapid manoeuvres. Work by Jeong
et al. highlights how comprehensive datasets from static tests
can yield high-fidelity models for aerodynamically coupled
systems like quadrotors, but this approach does not extend to
dynamic characterisation [5]. Furthermore, recent studies in
model-based navigation underscore the importance of dynamic
data, identifying angular rates as having a significant impact
on a vehicle’s aerodynamic model [6].

To address these challenges, the CARAC (Comprehensive
Automated Robotic Aerodynamic Characterisation) platform
was developed to perform aerodynamic load measurements
for coupled dynamic and static rotations of a drone at any
combination of actuator configurations, with high precision
and repeatability (Fig. 1). The platform is an evolution of a
foundational automated system by Avoni, which demonstrated
a nearly seven-fold increase in data acquisition speed for static
measurements but did not possess the capability for dynamic
testing [7]. By integrating a high-precision 6-DOF robotic
arm with a sensitive, lightweight load cell under a custom
experiment orchestrator, CARAC can systematically map static
characteristics and execute high-rate dynamic motions (up



to 2rads™! in this study) to capture unsteady effects. This
provides the rich dataset necessary for creating and validating
both analytical and data-driven aerodynamic models. While
the project’s initial scope included a real-time adaptive loop,
the focus was refined to first address the more fundamental
and prerequisite question of determining the most effective
data collection strategy for training generalisable models.

This paper first details the CARAC platform’s hardware and
software architecture, followed by the experimental methodol-
ogy. We then present system validation results, an evaluation
of a baseline analytical model, and finally, a comparative study
on data collection strategies for training robust neural network
models.

II. METHOD

To enable efficient, high-degree-of-freedom aerodynamic
characterisation, the CARAC (Comprehensive Automated
Robotic Aerodynamic Characterisation) platform was devel-
oped. This section details the platform’s implementation, com-
prising the experimental hardware apparatus, a custom control
and data acquisition architecture, and the defined experimental
and data processing protocols.

A. Experimental Platform

The physical testbed integrates several key hardware com-
ponents interconnected via Ethernet to a central control laptop.

1) Robotic Manipulator: The core positioning system is a
Staubli TX2-90 6-DOF industrial arm. Its primary attributes
for this application are its high joint speeds (up to 760°s™1)
enabling dynamic testing, a large workspace, and positional
repeatability of 0.02mm [8]. This high level of repeatability
is a critical enabler for the data compensation methods used
in our experimental protocols, allowing for non-sequential
calibration runs.

2) Force/Torque Sensor: Force and moment data is ac-
quired using an ATI NANO25-E F/T sensor, selected for its
high acquisition rate (7kHz over UDP), low latency, and
lightweight design which minimises inertial artifacts. The
sensitivity of this sensor necessitated several practical solu-
tions to ensure data integrity. Preliminary tests showed that
direct airflow caused temperature fluctuations, resulting in
a measurement drift of 0.5N to 1.0N over a minute. This
was mitigated by the custom shield described in Sec. II-A3
and by allowing a 30-minute thermal stabilisation period for
the sensor after power-on [9]. Further noise reduction was
achieved by establishing a common ground between the load
cell’s dedicated terminal and the large metal chassis of the
robotic arm.

3) Drone Prototype and Mounting Assembly: The drone
prototype is a custom-built, 120 g morphing-wing drone with
2-DOF wing sweep, developed for ongoing PhD research into
state-transition modelling and agile flight control. Morphing
surfaces are commanded via a custom servo controller inte-
grated into the orchestrator over WiFi.

A custom adaptor, 3D-printed with hard PLA, serves as the
critical mechanical interface. It orients the drone at 90° to the
arm to minimise aerodynamic interference and to leverage the

arm’s sixth joint for fast, simple pitching motions. The drone is
attached to the load cell tool interface via a 30 cm carbon rod,
a design choice that further aids in reducing flow disturbances.
Integrated into this adaptor is a two-piece environmental shield
that fully encloses the load cell, maintaining a 4 mm air gap to
thermally isolate the transducer from airflow while remaining
mechanically decoupled (Fig. 10).

4) Airflow Generation: Airflow is generated by a Wind-
Shape open-jet wind tunnel with 1008 counter-rotating fans
and a honeycomb flow straightener.

5) Motion Capture System: An OptiTrack motion capture
system (up to 240 Hz) is used purely for post-facto validation,
confirming the drone’s rigid body pose and the position of its
morphing surfaces.

B. Software and Control Architecture

The platform is orchestrated by a custom software solution
designed for cross-platform compatibility and minimal depen-
dencies.

1) The CARAC Orchestrator: The orchestrator is an asyn-
chronous application built in Rust using the Tokio runtime.
This choice provides deterministic performance without a
garbage collector and enables efficient, low-level manipula-
tion of network protocols and binary data. Initial evaluations
found that the ROS2 framework could not reliably handle the
required data throughput (see Appendix E).

The orchestrator implements a central DataSink for
data collection. Each hardware agent registers one or more
streams (a collection of synchronous channels) and receives
a StreamWriter handle. This allows agents to append
u32-timestamped (relative to experiment start time) £32 data
to memory buffers!. Each experiment run is saved as an
uninterrupted recording into a custom, space-efficient binary
file with minimal metadata, preserving the raw data for non-
destructive post-processing.

2) Low-Level Control and Communication: A custom
VALZ3 program running on the Stdubli CS9 controller exposes
a rich command interface over UDP. The protocol supports
a handshake mechanism and instructions for motion (direct,
linear, circular), speed profile updates, and dynamic tool offset
changes. This architecture leverages the CS9’s robust real-
time motion planning while providing full remote control. The
controller reports the end-effector pose based on its internal
PID setpoint at a frequency of 100 Hz, which provides a less
noisy state estimate than the external motion capture system.
All custom UDP protocols use a standardised format (magic
header, command ID, payload) with big-endian byte order.

C. Data Acquisition and Processing Pipeline

The conversion of raw sensor signals into analysis-
ready data follows a multi-stage pipeline designed for high-
throughput and repeatability (Fig. 2) The entire process is
handled by a custom Python application, enabling batch pro-
cessing of experimental sessions.

'u32 and £32 correspond to Rust’s type naming scheme for 32-bit
unsigned integers and IEEE 754 single-precision floating-point numbers.
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ing wind and load effect calculations, integrated with centre
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Data Isolation and Calibration: Aerodynamic data is
isolated using a differential calibration method. For each
experiment, four runs are performed: one with wind
(wind-on), another following the identical motion profile
without wind (wind-off), and then both again without the
drone mounted. The high repeatability of the robotic arm
allows these runs to be executed non-sequentially within
a larger test matrix. In post-processing, both wind-off
runs, which capture gravitational and inertial forces,
are subtracted from their respective wind-on runs, to
produce net aerodynamic influence and the aerodynamic
influence of the mount. The latter is then subtracted from
the former to isolate aerodynamic effect purely acting on
the drone itself. The load cell is re-biased before each
experiment to correct for short-term drift, adding a ~20's
overhead per run.

Payload Characterisation: As part of the initial setup,
an automated routine determines the payload’s mass
and centre of mass (CoM). This information is required
for transforming measured moments from the Load
Frame to the Body Frame during post-processing. The
procedure and its validation are detailed in Appendix D.
Data Synchronisation: Raw time-series data for each
run is loaded into memory. The data from all asyn-
chronous streams is then synchronised by linearly in-
terpolating samples onto a common, artificial time base
with a user-specified number of time slices (Fig. 3).
Filtering and Augmentation: A configurable 3rd-order
zero-phase Butterworth digital filter, which matches the
behaviour of MATLAB’s £i1tfilt algorithm [10], is
applied to the load cell data to remove sensor noise and
structural oscillations. Subsequently, the synchronised
data is augmented with angular rates (PQR) and drone
velocities (UVW), which are derived from the robot’s
reported attitude using a Savitzky-Golay filter.

Export: The final, processed data is exported into
Apache Parquet files for efficient storage and subsequent
analysis.
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Fig. 3: Data synchronisation process. Raw samples (solid
circles) from asynchronous streams (SO, S1, S2) are linearly
interpolated to generate synchronised values (open circles) at
discrete time slices (g, t1, t2).

D. Experimental Campaigns

To comprehensively characterise the drone’s aerodynamics
and evaluate different modelling approaches, three primary
experimental campaigns were designed and executed.

« Systematic Axis Sweeps (AX Dataset): To establish a
performance baseline and systematically map the flight
envelope, a test matrix comprising single- and coupled-
axis rotations was executed. These sweeps provide struc-
tured data ideal for validating the analytical model and
understanding its behaviour under predictable conditions.

o High Angle of Attack (AoA) Sweeps: To observe the
aerodynamic effect of roll and yaw, a specialised test
campaign was conducted that would change the drone’s
profile relative to the wind. The drone was subjected to
systematic roll and sideslip sweeps at a fixed pitch angle
¢ = 30°.

o Free-Flight Trajectories (FF) & Extended Free Flight
(EFF) Datasets): To test the hypothesis that a more
time-efficient data collection strategy could yield robust
models, continuous motion experiments were performed.
The drone followed complex, time-varying trajectories
while its actuators were commanded with random inputs
every 5s. This method was designed to capture a richer,
more continuous distribution of dynamic states compared
to the discrete nature of axis sweeps (Fig. 5). The FF
dataset comprises three unique, shorter trajectories for
initial model training. Due to programming complexity
arising from robot kinematic singularities, only one long,
continuous trajectory was feasible to execute, forming the
EFF dataset.

The properties of the Axis (AX), Free Flight (FF) and
Extended Free Flight (EFF) datasets collected by the CARAC
platform are summarised in Table 1.



TABLE I: Collected Dataset Comparison

TABLE II: Neural Network Training Datasets

‘ AX FF EFF Model Training Dataset(s)
Run Duration [s] 1to 10 42 333 Mi Axi
Time Divisions 1000 10000 100000 xS
Angular Velocities [rads—1] 0.1,2 0to 2.1 0to 2.9 M2 Free-Flight (FF)
Wind Velocities [ms—1] 4.1, 5.8 2.3,52,6.5 58 M3 Free Flight + Extended Free Flight
No. of Trajectories 10 3 1
No. of Actuations 27 9 67 . .
TABLE III: Experimentally Determined Centre of Mass
Total Samples 360 000 90000 300000
Runtime ~4 hours  ~20 minutes  ~10 minutes
Component Mass [g] CoM z offset [mm]
Mount only 67.90 + 0.07 34.70 £ 0.05
E. Modelling and Evaluation Framework Mount & drone  208.68 4 0.05 185.21 4 0.04

To quantify the performance of different data collection
strategies, a comparative framework was established, using the
existing analytical model as a baseline and training two types
of neural networks on the collected datasets.

1) Analytical Model: An existing analytical physics-based
model, which computes aerodynamic forces and moments was
used as a performance baseline against which all data-driven
models were compared.

2) Data-Driven Models: Two neural network architectures
were implemented to compare stateless and stateful learning
approaches for capturing unsteady dynamics.

o Multi-Layer Perceptron (MLP): A feed-forward net-
work with three hidden layers of size [128, 64, 64]
was implemented to model the instantaneous relationship
between state and aerodynamic response.

o Long Short-Term Memory (LSTM): A recurrent neural
network, configured with two layers, a hidden size of 32
and sequence length of 5 (~30ms), was implemented
to capture potential temporal correlations and unsteady
aerodynamic effects.

Both models have approximately 15000 trainable parame-
ters, a size chosen to be small enough to mitigate the risk of
overfitting while being sufficient to investigate the fundamental
differences in learning capabilities.

The analytical and trained models take 15 inputs (the
attitude quaternion g, angular velocity vector vpgr, translation
velocity vector wyyw and drone state/inputs xg4,ug) and
predict resultant body force and moment (Fy, M}),

3) Evaluation Strategy: The central goal of the study was
to assess the efficacy of different data collection strategies. To
achieve this, three experimental models (M1, M2, M3) were
defined, each trained on a different dataset or combination
thereof, as summarised in Table II. The generalisation capabil-
ity of each trained model was then evaluated by measuring its
performance across all three dataset types (AX, FF, and EFF).
The primary metric for comparison is the Root Mean Square
Error (RMSE) of the predicted lift component. Lift was chosen
as the key indicator due to observed inconsistencies in thrust
generation that affected the reliability of the drag calculations.

III. RESULTS & DISCUSSION

The CARAC platform was used to conduct several experi-
mental campaigns to characterise the aerodynamic properties
of the morphing drone. This section presents the results from
the initial system validation tests, followed by a detailed

analysis of the aerodynamic forces measured during systematic
axis rotations. Finally, it details a comparative study using this
data to develop and evaluate data-driven aerodynamic models
based on neural networks.

A. System Validation

Before evaluating aerodynamic models, it is essential to val-
idate the fundamental measurement capabilities of the CARAC
platform. This validation comprises two key aspects: the pre-
cision of static payload characterisation and the repeatability
of dynamic motion trajectories.

A key aspect of this validation is the precise determination
of the payload’s centre of mass (CoM), which was accom-
plished using the automated characterisation routine detailed
in Appendix D. The results, summarised in Table III, show a
high degree of precision. The mean and the standard error of
the mean (SEM) indicate low variability across five repeated
measurements. This level of precision is fundamental for
accurately transforming measured forces and moments from
the load cell frame to the drone’s CoM in post-processing.

Another critical requirement for the experimental method-
ology is the ability to repeat motion trajectories with high
fidelity, as this allows for the effective isolation of aero-
dynamic forces through the subtraction of calibration runs.
To quantify this capability, the measured forces from two
independent, identical free-flight experiments were compared.
A cross-correlation analysis of the signals, shown in Fig. 4,
reveals a time lag of only 9.98ms between the two runs.
This result confirms the high temporal and spatial repeatability
of the robotic system, validating the differential measurement
approach used throughout this study.

B. Aerodynamic Characterisation and Analytical Model Eval-
uation

With the platform’s measurement fidelity validated, a series
of experiments were conducted to perform a baseline aerody-
namic characterisation and to evaluate the performance of the
existing analytical model.

Systematic rotational sweeps around the drone’s principal
axes provide a direct comparison between the analytical
model’s predictions and the experimental data. During high-
rate dynamic pitching tests (2rads™!), a clear hysteresis loop
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Fig. 4: Force measurements from two independent, extended
free-flight experiments. The signals were conditioned with a
zero-phase Butterworth low-pass filter (f. = 100 Hz). Cross-
correlation analysis reveals a time lag of 9.98 ms between the
two measurements.

emerges between the forward (pitch-up) and reverse (pitch-
down) motions, particularly in the lift profile (Fig. 6). This
unsteady effect, which is not predicted by the analytical
framework, results in a prediction discrepancy of 0.85 N (66 up
to about 53 %) at o = —30°.

To further probe the model’s limitations, its performance
was evaluated in off-axis flight by subjecting the drone to roll
and sideslip sweeps at a high, fixed angle of attack (o = 30°),
as shown in Fig. 6. The results reveal prominent quantitative
errors. The analytical model incorrectly predicts that lift is de-
pendent on both roll and sideslip angle, with a parabolic shape
for roll and a fall-off for sideslip. In contrast, the experimental
data shows that lift is largely insensitive to both inputs in this
flight regime. This discrepancy results in a peak error of 0.2 N
to 0.3 N (18 % to 27 %). Additionally, an unmodelled dynamic
response was observed in the drag force, which decreased at
higher roll and sideslip rates, and an even larger offset with
respect to the static measurements, highlighting the model’s
failure to capture unsteady phenomena in this regime.

Collectively, these findings indicate that while the analytical
model serves as a reasonable approximation for basic axis
rotations, its quantitative accuracy degrades in dynamic or
coupled off-axis flight regime. This motivates the use of a data-
driven approach to capture these dynamic unsteady effects.

C. Data-Driven Modelling: Collection Strategy and General-
isation

To address the limitations of the analytical model, a compar-
ative study was conducted to determine the most effective data
collection strategy for training robust neural network models.
The central research question was whether a time-efficient,
free-form data collection method could produce models with
strong generalisation capabilities.

1) Dataset Input Distributions: A fundamental difference
between the collection strategies is the distribution of dynamic
states they capture. The Free-Flight (FF and EFF) datasets
provide a broad and continuous distribution of angular rates

(PQR) and velocities (UVW) Fig. 5. In contrast, the Axis
Sweep (AX) dataset captures a much narrower, discrete set of
states, concentrated around specific operational points. This
suggests that the free-flight data may be better suited for
training models that can generalise across a wider range of
flight conditions.

2) Quantitative Model Performance: The performance of
the analytical model and the six trained neural network models
was evaluated across all three datasets (Fig. 7). The results
provide a clear quantitative comparison of their generalisation
capabilities.

The analytical model, serving as a baseline, performs best
on the structured AX dataset (RMSE of 0.229) but its accuracy
degrades significantly on the more dynamic Free-Flight (FF)
and Extended Free-Flight (EFF) datasets. This confirms that
while it captures quasi-static relationships, it fails to represent
the more complex, unsteady dynamics present in free-form
trajectories.

The models trained exclusively on the Axis Sweep data
(M1) demonstrate the limitations of a specialised training
approach. While they are able to effectively learn their own
dataset (AX), more than halving the error of the analytical
model, they fail to generalise very well to the free-flight data.
This indicates that while they have learned the specific patterns
of the axis sweeps, they have not captured a more general
representation of the drone’s aerodynamics.

In contrast, the models trained on free-flight data show
superior generalisation. The M2 models, trained on the short
FF dataset, already show a strong ability to generalise to the
much longer, unseen EFF dataset. The most significant result
comes from the M3 models, trained on the combined FF+EFF
data. The M3-LSTM model achieves the lowest overall error
on the EFF test set (RMSE of 0.080). More importantly, these
models demonstrate an improved ability to generalise back
to the structurally different AX dataset. The M3-MLP model
achieves an RMSE of 0.288 on the AX data, a substantial
improvement over the M2-MLP’s 0.429 and approaching the
performance of the analytical model itself.

These results lead to a clear conclusion: the free-flight data
collection strategy is not only more time-efficient but also
produces models with better generalisation capabilities. The
rich, continuous distribution of dynamic states within the free-
flight data forces the models to learn a more fundamental rep-
resentation of the system’s aerodynamics, making them more
robust and applicable to a wider range of flight conditions than
models trained on systematic axis sweeps.

3) Qualitative Model Performance: To visually comple-
ment the quantitative metrics, the performance of all models
was evaluated on an unseen segment of the Extended Free-
Flight (EFF) validation dataset. As shown in Fig. 8, all models,
including the analytical one, successfully capture the low-
frequency evolution of the lift force, indicating that each has
learned the primary quasi-static relationships.

However, critical differences emerge in their dynamic fi-
delity. The analytical model’s prediction is noticeably rounded,
failing to match the sharp peaks characteristic of rapid attitude
changes. Similarly, the Axis-trained models (M1) consistently
show the largest deviation from the ground truth. In contrast,
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Fig. 5: Model input distributions for various experimental datasets. The inputs are flight angles « and 3, angular velocities p,
q, v, and the norm the the airspeed vector v (UVW). (a) distributions for the coupled (red) and single (blue) systematic axis
sweep (AX) datasets. This panel shows a much narrower distribution, reflecting the highly systematic nature of the axis sweep
data collection. The tail ends of the distribution are due to the acceleration at the beginning and end of the experiment. (b)
distributions for the Free Flight (red) and Extended Free Flight (blue) datasets. These distributions are notably wider, capturing
a greater range of dynamically continuous moving parameters due to the nature of continuous flight.

TABLE IV: MLP Model Complexity Evaluation

Model Hidden layers RMSE
A 1 0.577
B 8 0.216
C 2-2 0.652
D 16-8 0.219
E 32-16 0.228
F 128-128-64 0.244
G 256-128-64-16 0.246

the models trained on free-flight data (M2 and M3) track
the experimental signal with higher fidelity. The M3-LSTM
model, in particular, excels at capturing the high-frequency
transients.

D. Impact of Model Complexity on Learning Unsteady Dy-
namics

Having established the superiority of the free-flight training
strategy, a final investigation was conducted to understand the
relationship between model capacity and performance. This
study aimed to determine whether increasing model complex-
ity would lead to a corresponding increase in performance, or
if learning was constrained by the richness of the training data
itself.

A range of MLP architectures, from a single neuron to
a large, four-layer network, were trained on the combined
FF+EFF dataset and evaluated on an unseen free-flight val-
idation trajectory. The results, summarised in Table IV, reveal
a non-monotonic and highly insightful relationship between
model size and predictive accuracy.

Contrary to the common assumption that larger models
yield better performance, the best result (RMSE of 0.216)

was achieved by a remarkably simple architecture: a single
hidden layer with only eight neurons (Model B). Increasing
the model’s depth and complexity did not lead to further
improvement. Notably, the two-layer, two-neuron model (C)
performed exceptionally poorly, indicating that a certain min-
imum capacity per layer is necessary for effective learning.

This analysis strongly indicates that performance on this
task is not limited by model capacity but by the nature of
the training data and the training technique. While the free-
flight dataset is rich enough for a simple MLP to learn the
dominant dynamic relationships, capturing even more subtle,
high-frequency unsteady effects would likely require a data
collection strategy explicitly designed to excite those modes,
such as incorporating rapid step inputs or high-frequency
oscillations into the test trajectories.

IV. CONCLUSION

This work detailed the development, validation, and applica-
tion of the CARAC platform, an automated system designed to
address the significant challenge of characterising the complex
aerodynamics of morphing UAVs. By integrating a high-
precision robotic arm, a high-frequency force/torque sensor,
and a custom high-performance software orchestrator, CARAC
enables the efficient acquisition of both static and, critically,
high-rate dynamic aerodynamic data.

The platform’s high spatial and temporal repeatability was
validated, confirming the viability of its differential measure-
ment technique for isolating purely aerodynamic forces. Using
this capability, the quantitative limitations of a traditional,
analytical model were demonstrated, particularly its inability
to capture the hysteresis present in dynamic manoeuvres. This
motivated a comparative study on data collection strategies
for training robust data-driven models. The central finding of
this work is that a time-efficient, free-flight data collection



Aerodynamic Force Characterisation: Rotational Sweeps and Fixed AoA Tests
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Fig. 6: Aerodynamic lift and drag forces (Wind Frame) from systematic rotational sweep experiments. The upper six plots
display results from single-axis pitch (), sideslip (/3), and roll (¢) sweeps. The lower four plots show lift and drag as a function
of roll and yaw angles at a fixed angle of attack oo = 30°. All plots are shown against the analytical model. Pitch-up (Forward)
and pitch-down (Backward) passes are indicated by lighter and darker shades, respectively. A common legend applies to all

subplots.

strategy produces neural network models with superior gener-
alisation capabilities compared to those trained on systematic
axis sweeps. Furthermore, an analysis of model complexity
revealed that predictive performance is currently constrained
not by model capacity, but by the richness of the dynamic
events within the training data.

Despite these advancements, the platform has several limi-
tations that inform future work. The differential measurement
technique, while powerful for isolating airframe aerodynamics,
inherently cancels out the effects such as propellor wash

or the pumping of air by the wings. Additionally, motion
planning is currently a manual process designed to avoid
robot singularities, and system rigidity and induced oscillations
remain a fundamental challenge.

Future work will proceed along several key avenues. A
primary focus will be a comprehensive investigation into
neural network architectures and data handling. Building on
the findings regarding data richness, new data collection tra-
jectories will be designed to explicitly excite high-frequency,
unsteady aerodynamic modes. A significant next step will be
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Lift RMSE Across All Datasets
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the model is evaluated on its training dataset are highlighted
in red. Models M1, M2, and M3 were trained on the AX, FF,
and FF+EFF datasets, respectively.
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Fig. 8: Qualitative comparison of lift prediction for all models
on an unseen segment of the Extended Free-Flight (EFF)
validation dataset. While all models capture the general low-
frequency trend of the experimental ground truth (black), their
ability to track high-frequency dynamics and sharp peaks
varies.

to develop a hybrid modelling approach that integrates the
airframe aerodynamics measured by CARAC with a separate
characterisation of the self-acting effects. Finally, the integra-
tion of a kinematic-aware motion planner will be pursued to
fully automate the generation of safe and efficient test tra-
jectories, removing the current manual design bottleneck and
further enhancing the platform’s capabilities. Such a planner
would ensure that generated trajectories remain clear of robot
singularities, thereby guaranteeing desired payload translation
and angular velocities and preventing runtime errors on the
CS9 controller. Furthermore, by actively planning paths within
the robot’s operational envelope, a kinematic-aware motion
planner would significantly reduce the risk of collision be-
tween the payload and the WindShape or the robot itself,
moving beyond current reliance on simple bounds-checking
on movement amplitudes.
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Fig. 9: Qualitative comparison of lift prediction for MLP mod-
els of varying complexity on an unseen free-flight validation
trajectory. The experimental data (ground truth) is shown in
black. Note that even a single neuron captures the basic trend,
and performance improvements show diminishing returns as
model size increases, suggesting the learning is constrained by
the richness of the training data.
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APPENDIX A
COORDINATE FRAMES & CONVENTIONS

This section defines the coordinate frames, transformations,
and conventions used for motion control and data analysis. All
coordinate frames are right-handed Cartesian systems.

A. Coordinate Frames

o World Frame (WF): A fixed inertial frame whose origin
is at the base of the robotic arm. The X-axis points
forward, the Y -axis points left, and the Z-axis points up.

o Tool Frame (TF): A frame rigidly attached to the mount-
ing flange of the robot’s end-effector. Its pose (position
and orientation) is defined relative to the WF by the
robot’s forward kinematics.

o Load Frame (LF): A frame originating at the geometric
center of the ATI F/T sensor where forces and moments
are measured. It is rigidly attached to the TF. The LF is
defined with an orientation rotated 90° about the TF’s z-
axis, which aligns the LF’s z-axis with the nominal wind
direction.

+ Body Frame (BF): A body-fixed frame with its origin at
the payload’s Center of Mass (CoM). The BF is oriented
with its z-axis pointing toward the drone’s nose, its y-axis
to the left wing, and its z-axis up. The analytical model’s
parameters (such as incoming wind direction) are defined
with respect to this frame.

e Wind Frame: A frame oriented with the incoming
airflow, such that its z-axis is aligned with the Body
Frame drag direction and its z axis is aligned with the
Body Frame lift direction.

B. Aerodynamic Angles

The orientation of the Wind Frame relative to the Body
Frame is defined by two angles, the Angle of Attack o and
the Angle of Sideslip 8. They are defined as:

« = arctan <—w> [ = arcsin < Y ) ()
u \’UUVW|

where vyyw is the wind vector (wind velocity + world
translation velocity) oriented into the wind.

C. Transformations

e LF-to-BF: To analyze measured forces as if they were
acting at the drone’s CoM, the moments measured in the
LF (M r) must be corrected for the moment induced by
the forces (FLp) acting at a distance (fcom). The trans-
formed moment in the Body Frame (MpF) is calculated
as:

Mg = Mg — tcom X FLp ()

The transformation from the LF to the BF consists of a
single translation vector tcon, determined experimentally
by the payload characterisation procedure described in
Appendix D.

Fig. 10: Custom 3D-printed load cell adaptor and environmen-
tal shield. (a) Perspective view of the two-piece enclosure. (b)
Section view detailing the 4 mm air gap isolating the load cell
body.

D. Orientation Convention

o Tait-Bryan Angles: The orientation of the Body Frame
(BF) relative to the World Frame (WF) is described using
a set of Tait-Bryan angles (¢, 6, ). The convention used
is a sequence of extrinsic rotations applied in the order
XYZ.

E. Payload Definition

o Payload: The payload refers to all components whose
weight is measured by the F/T sensor. This includes
the drone itself, the carbon mounting rod, and the 3D-
printed adapter that attaches to the sensor and the load
cell transducer head.

APPENDIX B
DATA PROCESSING AND STATE ESTIMATION

This section details the numerical methods used in the post-
processing pipeline to convert raw, synchronised data into the
final analysis-ready data frames.

A. Filtering

To remove high-frequency structural oscillations and sen-
sor noise from the force/torque data, a 3rd-order digital
Butterworth filter was applied. A zero-phase implementation
(equivalent to MATLAB’s filtfilt) was used to prevent
introducing phase lag into the signal, which is critical for
analysing dynamic events. The cutoff frequency (f.) was
typically set between 5 Hz and 10 Hz, based on FFT analysis
of the raw signal which identified the primary structural mode
at approximately 16 Hz.

B. Derivation of Velocity and Angular Rates

The CARAC platform uses the Stdubli CS9 controller’s
setpoint as the primary source for the drone’s pose, as it is less
noisy than the external motion capture system. The controller
provides the end-effector’s position and orientation (as Tait-
Bryan angles) at a constant rate of 100 Hz.

To derive the drone’s linear velocities in the body frame
(UVW) and angular rates (PQR), a Savitzky-Golay filter was
applied to the time series of position and orientation data. This



filter performs a local polynomial regression to smooth the
data and compute its derivatives, which is more robust to noise
than simple finite differencing. For this study, a filter window
size of 99 points (corresponding to ~ 36 ms) and a polynomial
order of 3 were used to calculate the first derivatives.

APPENDIX C
NEURAL NETWORK TRAINING DETAILS

¢ Loss Function: The Mean Squared Error (MSE) between
the predicted and true aerodynamic forces and moments
was used as the loss function.

o Optimizer: The Adam optimizer was used for all train-
ing, with an initial learning rate of 1-1073.

« Batch Size: A batch size of 64 was used for all experi-
ments.

o Epochs: Models were trained for a maximum of 50
epochs, with an early stopping criterion that terminated
training if the validation loss did not improve for 5
consecutive epochs. The model weights from the epoch
with the lowest validation loss were saved and used for
the final evaluation.

APPENDIX D
EXPERIMENTAL PAYLOAD CHARACTERIZATION

Precise knowledge of the CoM is fundamental for correctly
interpreting raw sensor data. Forces and moments must be
transformed from the Load Frame to the Body Frame, which is
centred at the payload’s CoM. While force vectors are invariant
under this translation, moments must take into account the
lever arm between the sensor origin and the CoM.

An automated algebraic method was developed to simulta-
neously solve for the payload’s mass, its CoM offset vector,
and the load cell’s intrinsic measurement bias. The procedure
takes static force and moment readings at three distinct,
mutually orthogonal orientations of the payload with respect
to gravity.

By changing the orientation, the direction of the gravity
force vector changes within the Load Frame, while the CoM
and sensor bias remain constant. This creates a solvable
system of linear equations. This approach is distinct from the
numerical minimization method used in prior work [7], as it is
a direct, non-iterative algebraic solution. The technique, along
with a 2s stabilisation period in each position, takes about
10s. Each position was recorded for 1s, with low-pass filtering
at 5 Hz, followed by averaging collected samples to obtain a
single reading.

A notable practical challenge of this method was the
physical execution of the required orthogonal poses. The
90° rotations, combined with the drone’s position on a long
mounting strut, introduced a significant collision risk with the
robotic arm’s own structure. Safe execution required careful
supervision and application of robot angular velocity con-
straints.

For the primary analysis of aerodynamic lift and drag forces
detailed in the Method, explicit CoM characterisation was
not strictly necessary, as the approach relied on a differential
technique to cancel out gravity/inertia contributions and isolate

Framework/Protocol QoS/Method Loss [kHz] Limit [kHz]
ROS2 (rclpy) Reliable 2.5
ROS2 (rclpy) Best Effort 1.3 2.5
ROS2 (rclcpp) Reliable 2.7
ROS2 (rclcpp) Best Effort 4.8 6.8
UDP (Python) Loopback 33

UDP (Rust) Loopback 950

Tokio MPSC (Rust) In-process 11 300

TABLE V: Message Throughput Comparison

aerodynamic components. However, the CoM characterisation
capability was fully developed and retained in case it is used
for future analysis of the high-resolution moments, which were
also recorded for more advanced studies.

APPENDIX E
PERFORMANCE ANALYSIS AND IMPLEMENTATION
RATIONALE

This appendix provides a quantitative basis for key ar-
chitectural decisions made during the development of the
CARAC platform, particularly the choice of a custom Rust-
based orchestrator over ROS2 and the design of the high-
throughput data acquisition sink.

A. Performance Evaluation of ROS2 vs. Custom Solution

A primary requirement for the orchestrator was its ability to
handle high-frequency, low-latency data streams from multiple
hardware agents simultaneously. To validate the suitability of
existing frameworks, a performance benchmark was conducted
on a single machine (localhost) to measure the maximum
reliable message frequency of ROS2.

1) Methodology: A C++ publisher node was created to
publish a monotonic sequence of Int 64 messages at a grad-
ually increasing frequency. C++ and Python subscriber nodes
received the messages and validated the sequence number.
Two Quality of Service (QoS) profiles were tested: Best Effort
and Reliable, both with Volatile durability and a History
Depth of 10. The performance of these configurations was
compared against a simple Python UDP loopback test and an
in-process Tokio MPSC (Multi-Producer, Single-Consumer)
channel, which represents the internal communication prim-
itive used in the final Rust orchestrator.

2) Results and Justification: The performance results, sum-
marized in Table V, revealed significant limitations in ROS2’s
throughput. The receiver process would attain a core utilisation
of 100 % before the reception frequency started to degrade.
The Keep All history setting caused unbounded memory al-
location, eventually raising a C++ exception. In contrast, the
custom Rust and Python UDP implementations demonstrated
orders of magnitude higher throughput.

This performance gap, combined with the project’s limited
need for ROS2’s broader features like distributed discovery,
solidified the decision to develop a custom orchestrator. While
further ROS2 tuning (e.g., different DDS implementations,
message batching) was possible, the superior performance
and development flexibility of the custom Rust solution were
compelling. The orchestrator uses 2.5 % CPU core utilisation,
receiving 5.5 Mbits~! (or 7360 UDP packets/s).



B. Data Sink Architecture Rationale

The DataSink is the core component for data collection,
designed to handle concurrent, high-frequency writes from
multiple asynchronous hardware agents without introducing
contention bottlenecks or data loss. Its architecture is based on
a two-level locking strategy and efficient buffer management.

1) Concurrent Writing Strategy: Upon registration,
each hardware agent is provided with a lightweight
StreamWriter handle. This handle contains the index to a
dedicated buffer within a shared vector, allowing each agent
to write its data without interfering with the buffers of other
agents. The shared state is protected by a two-level locking
mechanism:

1) An outer ‘RwLock‘ guards the shared state containing
the recording status. During data acquisition, hardware
agents only require a read-lock to check if recording is
active. Read-locks can be held concurrently, so multiple
agents can proceed without blocking one another. An
exclusive write-lock is only taken for the brief moments
when starting or stopping a recording run.

2) An inner ‘Mutex‘ protects the data buffers. This lock is
acquired only after the cheap read-lock on the outer state
confirms that a sample should be recorded. The critical
section is extremely short: it only involves indexing the
vector and appending a sample to the agent’s dedicated
buffer.

This design ensures that contention is minimized during the
high-throughput recording phase.

2) Buffer Management and Data Persistence: Instead of us-
ing a growable/pre-allocated Vec<u8>, each stream’s buffer is
implemented with the chunked_bytes: :ChunkedBytes
crate. This data structure allocates memory in larger, non-
contiguous chunks, avoiding the potentially costly reallocation
of a simple growable vector during a long recording session.

A core principle of the platform is the non-destructive
preservation of raw data. At the end of a ’run,” the DataSink
locks the buffers and drains their binary contents into a
custom file format. This raw file contains all recorded samples,
including noise. All filtering and analysis is performed in a
separate post-processing step. This ensures that experiments
never need to be re-run to test a different filter parameter;
the raw data is always available for reprocessing, which is
a critical aspect for ensuring experimental repeatability and
exploring different analysis techniques.
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